
International Journal of Scientific & Engineering Research Volume 8, Issue 6, June-2017 449
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

RELIABLE SOFTWARE SERVICES IN
MULTI-CLOUD SYSTEMS

M.ALRIFAI1 AND M. KHEMAKHEM2

Abstract:—Cloud computing is an emerging and innovative platform, which makes computing available to the end-users as services. . Most of
the systems moved to the cloud for highly reliable service. Fault tolerance is very important to provide correct results even in the presence of a
fault. Cloud providers offering product or service cannot easily transition to their competitors where customers become locked in; Multi-Cloud
model invented to unify and combine many different clouds to allow software service portability, customer lock-in increases So, to achieve
reliability in cloud services, the requirement for fault tolerance increases. In this paper, we introduce fault tolerance manager and select the most
reliable provider and vote between an even or odd number of results to make decisions. It shows a good performance in executing complex tasks
submitted and high resource utilization, and make decisions faster.

Index Terms—Cloud Computing, Fault Tolerance, Software reliability, Software Services, multi-cloud, Customer lock-in.

————————————————————

1. INTRODUCTION

Cloud computing is a model for enabling

ubiquitous, convenient, on-demand network access to a
shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal
management effort or service provider interaction. The
deployment is faster, cheaper and promotes on-demand,
intelligent spending.

Cloud computing futures have caught the
interest of different parties such as customers, companies,
and governments to start using this model. Customers were
once locked in with a single cloud provider platform. Then
the multi-cloud model started to unify and combine many
different clouds. The multi-cloud platform enhances the
portability of software service between cloud service
providers. The reliability of using single cloud service can
have a direct impact on customer service reliability. There
is a need to increase software service reliability by using
many cloud providers running portable versions of the
same software service.

There are two types of downtime for a
computer system: planned and unplanned. Most of the
time, planned downtime is kept to a minimum because
providers are looking for high uptime in their services. So,
planned downtimes are scheduled for computer resource
maintenance or upgrades. Unplanned downtime arises
suddenly due to human error, disaster or unexpected
failure [1].

This paper aims to present a fault tolerance
technique for improving the reliability of software services
in the cloud. This technique is based on the integration of

similar cloud services by multi-cloud systems for execution
by a reliable cloud service provider.

Choosing to work with a multi-cloud is due to
several factors. First, there is a benefit to the enhanced
technology of cloud services [2]. Second, there is an
increasing number of cloud providers that are offering
products or services that cannot easily transition to a
competitor [3], A U.S. report shows the top priority in
selecting a solution provider in 2015 is the ability to
personalize solutions. This leads to more lock-in problems.
Third, as many as one-third of U.S. respondents have
migrated a big percentage of their IT infrastructure to the
cloud because of the need to improve reliability, reduce
downtime, and offer improved service levels [4].

The goal of cloud interoperability and
portability is to allow customers to make the best use of
multiple cloud services that can interoperate and cooperate
with each other, avoiding vendor lock-in. Cloud
applications must be portable on top of many cloud PaaS
and IaaS providers. This portability allows the migration
between different providers to take advantage of lower
prices and/or better qualities of services (QoS) [5]. [It is our
concern to solve the fault in the cloud by using redundancy
on a multi-clouds environment; therefore, our application
needs to be portable.] Cloud portability regards the ability
to transfer a cloud entity from one cloud to another; it has
two main aspects: data portability and application
portability[6][7][8].

2. METHODOLOGY

The purpose of the approach is to improve
cloud application reliability using multi-cloud services.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 6, June-2017 450
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Reliability can be improved by minimizing the effects of
failure in cloud applications. The manager selects the
available resource and uses a fault tolerance mechanism to
generate multiple copies of the same application to run in
multiple providers. Also, this approach is employed to
build a complete application image to run in multi-cloud
providers; this image is portable across the platforms and
should be registered first in the cloud. [The majority voter
is a dynamic approach which depends on the number of
first received results.] Finally, the proposed approach needs
to have a measuring mechanism and reliability assessor
(RA) to evaluate cloud provider performance.

Handling fault by N-version programming
(NVP) is a technique to tolerate software faults by creating
a diverted duplication of the software. NVP is known as
static redundant approach [9]. When software versions
are independent, even if there is a fault that causes a local
failure in version x, the whole system is likely to function
correctly because the other independent versions are likely
to function correctly under the control of the same fault-
tolerance manager. We can ensure the design diversity by
using different cloud service providers that have an
independent design.

OS-level virtualization (OSLV) (software
container) abstracts the operating system by isolating the
applications; this will ensure by using containers to support
portability across many cloud environments.

The fault-tolerance managerin Multi-Cloud
(FTMMC) architecture is used to manage multiple,
diverted, independent services to ensure reliability. The
services are selected based on their rollability record and
dispatch request in parallel, using NVP techniques. Based
on the analysis of the results optioned by the fault-tolerance
manager, we will update and improve performance records
about cloud providers. This information will be used every
time we run the cloud application to achieve optimal cloud
application performance and reliability. The approach
phases are described in the Figure 1.

The model based on best practices in fault
tolerance in cloud computing [10][11][12],It consists of six
phases: receiving a computing request, selecting ready,
reliable providers, dispatching requests to a ready Cloud
Service Provider (CSP), starting to watch time, gathering
enough results to make a decision, and assessing the
reliability.

Fig1. FTMMC System Model

2.1 Select Ready Reliable Providers

The dispatcher selects the CSP for computation
of the maximum reliability. The request has QoS
requirements; these requirements play a role in the
selection of, for example, criticality, duration, interval time
checks (TC), and instances of speeding up. This will impact
the number of nodes running and the type of selected
resources.

2.2 Dispatching Requests to Ready CSP

The dispatcher component is used to allocate
efficiently required resources and avoid under-
provisioning and over-provisioning during failures. It also
provides replication mechanisms by managing individual
replicas of clients' applications, which include their location
and current state. In order to connect with each provider,
the set of metadata is required to establish a parallel
connection with CSP and the OSLV inside it.
Communication with each cloud provider service will use
two methods. The first uses API functions to control the
application remotely, and the second uses web service
requests to distribute computing instructions to the cloud
application. It starts once a new service request is received.
Then, the number of versions is determined and selected.
After that, the dispatcher passes the requests
simultaneously to the nodes to be processed. A log record
is done in order to keep information about the time of each
stage and information.

2.3 Start Watching Time

Using a time checker will guarantee that the
system will not have either late timing failure or early
timing failure. The time checker is evaluated in
milliseconds. The time checker starts after dispatching the
requests to the nodes and keeps checking the status of the
unfinished nodes. Node status updated in case of time

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 6, June-2017 451
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

failure and exits the system when node status exceeds the
time.

2.4 Gathering Enough Results to Make Decision

The steps are the core of fault tolerance
manager because most of the fault tolerance process is
covered here, as Decision Mechanism (DM) algorithm
shows in Figure 2, starting with receiving a result from one
of the nodes, the result is checked for early time failure. The
decision can be made if two or more results are available;
these results must have no time failures.

Fig.2 DM algorithm chart

An enhanced majority voting decision
mechanism is being used, there are two enhancements
done in the Moore majority vote algorithm, The first
enhancement consists of checking if the algorithm has a

majority result because the Moore algorithm has no
indicator if a majority is not found; therefore, the counting
loop is done after the Moore algorithm gives the results.
The second enhancement is related to the majority rule,
which can handle voting with an even or odd number of
votes.

The goal of majority voting is to find the result
that receives more than 50% of the votes. So, we use
Equation (1) for even number of votes or Equation (2) for
odd number of votes to find the minimum number of votes
to reach a 50% majority [13].

Minimum number of votes to majority = n/2+1 (1)

Minimum number of votes to majority = (n+1)/2 (2)

After the decision mechanism success, the timer
will be stopped, and the result will be submitted;
otherwise, the system will wait for additional results to re-
process the decision mechanism.

2.5 Assessing the Reliability:

In the case of failure or success in finding the
correct result, the knowledge collected during the
computing cycle can enhance the reliability rate of each
CSP. In the beginning, the reliability of each CSP is
supposed to be 100%. Later, if the node fails to produce the
correct result or has a timely failure, its reliability decreases
using adaptability factor n, and if a node produces a correct
result without timely failure, its reliability increases using a
reliability factor.

3. EXPERIMENTS and DISCUSSION

The performance of the approach was assessed
with a different number of providers and different fault
rates. Also, be comparing the performance with and
without some of the components, finally, the approach was
compared against the performance of a single-version
software approach.

3.1 Throughput

Throughput is one of the most important
standard metrics used to measure the performance of fault
tolerance. It is used to measure the ability of the provider to
accommodate service requests [14].

Throughput (n) = n/Tn, where n is the total
number of submitted requests, and Tn is the total amount
of time required to complete n requests.

The objective of this experiment is to compare
the performance of using more providers in the manager.
Also another objective is compare the performance of the

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 6, June-2017 452
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

proposed dynamic majority voter for different number of
received results and the majority voter for fixed number of
received results.

In the first method DM receive the fastest two
results, this two results processed by the DM to find if it
good content between even number of results, if good
content is not found the DM wait for the next result, if a
third result received the DM process this results to find
good content between an odd number of results , if good
content is not found the DM wait for more even and odd
number of results, if the maximum number of results
reached the manager send all results to RA , finally, the
manager start new cycle for the same request or for the next
request.

In the second method DM wait only for all
results to be received, the results processed by the DM to
find if it have good content, next, the manager send all
results to RA, finally, the manager start new cycle for the
same request or for the next request.

In both methods, 2500 requests were submitted,
the experiment start with an average of 5% injected faults
and finishing with 35% injected faults.As Figure 3 and 4
shows.

Fig.3 Throughput Comparison with 2500 requests submitted and voting start

with two or more results received

Fig.4 Throughput Comparison with 2500 requests submitted and voting start

only when all results received

The approach can tolerate the fault very well,
the approach can benefit from the increase number of cloud
to finish more requests. Also, the approach can benefit from

voting using dynamic number of results to speed up the
process of DM.

 The number of provider had the higher
positive effect in the first method performance then second
method, add more provider in the first method have no
limit by the approach to give high performance and the
reliability.

3.2 Turnaround time (TRT):

The turnaround time is an important parameter
for evaluating the performance of fault tolerance. It shows
how long the system takes to execute customer requests; a
higher number of TRT time means lower productivity [14].
TRT is the interval from the time of submission requests to
the time of completion.

This experiment compares the performance of
multi-cloud fault-tolerance technique with single-cloud
fault-tolerance technique against different injected faults.

In the first method, a multi-cloud use many
provider to receive many results for the same request,
request executed in parallel by many providers, TC check
the time and result readiness in parallel with provider
execution, next the DM and RA work in sequence to
process the results.

In the second method, a single-cloud use single
provider to receive single result, this result checked for
fault using Reversal Checkers acceptance test, it work by
reversing the computing using the output value to result
the corresponding input value [15].

In this experiment, 2,500 requests are
submitted, 32 cases were tested by starting with an average
of 5% injected faults until 35% injected faults. As Figure 5
shows.

Fig.5 Turnaround time comparison with 2500 requests submitted

Reversal checkers in a single cloud will lead to
more delay time to accept the result, this result high TRT
time. On the other hand, the proposed approach selects the
best providers who are less likely to fail. This will lead to

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 6, June-2017 453
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

fewer faulty providers and reduce the delay times
compared to the other approach.

Using two providers in the proposed approach
result high TRT compared to use higher number of used
providers. Using only two provider can give same result as
single-version approach if the injected failure exceed
around 33%.

4. CONCLUSION

In this paper, we have built a multi-cloud fault
tolerant to enhance the reliability in the cloud. Our
approach implements fault tolerance technique to assess
the reliability and vote faster by making a decision for both
odd and even number of results.

We have performed a series of experiments to
assess the performance of the proposed multi-cloud fault
tolerant approach in many situations. Results show that the
use of our fault-tolerant approach reduces the wasted time
caused by faults to near optimal level system throughput or
very low turnaround time.

REFERENCE

[1] Jeenia Jain, and Ramandeep Singh, "Improving

Service Reliability in Cloud Computing
Environment," International Journal of Scientific &
Engineering Research, vol. 5, no. 3, pp. 2229-5518,
March-2014.

[2] T. McCue, "Cloud Computing: United States
Businesses Will Spend $13 Billion On It," forbes.com,
29 jan 2014. [Online]. Available:
https://www.forbes.com/sites/tjmccue/2014/01/29/clo
ud-computing-united-states-businesses-will-spend-
13-billion-on-it/#788114734f89. [Accessed 12 jan
2017].

[3] A. Rabbetts, "Cloud supplier lock-in – our
experience," computerweekly, Dec 2013. [Online].
Available:
http://www.computerweekly.com/opinion/Cloud-
vendor-lock-in-our-experience. [Accessed Jan 2017].

[4] C. Kern, "Survey: Reliability, Business Continuity
Drive Demand For Cloud Adoption," Business
Solutions Magazine, Jan 2015. [Online]. Available:
https://www.bsminfo.com/doc/survey-reliability-
business-continuity-drive-demand-for-cloud-
adoption-0001. [Accessed jan 2017].

[5] Swaraj P. Thakre, and Prof. Nitin R. Chopde, "A

Review of Collaboration of Multi-Cloud – An
Effective Use of Cloud Computing," International
Journal of Application or Innovation in Engineering &
Management (IJAIEM), vol. 2, no. 3, p. 328, March
2013.

[6] C. S. C. Council, "Interoperability and Portability for
Cloud Computing: A Guide," Nov 2014. [Online].
Available: http://www.cloud-
council.org/deliverables/CSCC-Interoperability-and-
Portability-for-Cloud-Computing-A-Guide.pdf.
[Accessed 2 Mar 2016].

[7] Tobias Kurze, Markus Klems, David Bermbach,
Alexander Lenk, Stefan Tai, and Marcel Kunze,
"Cloud Federation," in Proceedings of the 2nd
International Conference on Cloud Computing, GRIDs,
and Virtualization (CLOUD COMPUTING 2011),
Rome, Italy, sep 2011.

[8] T. o. Group, "Cloud Computing Portability and
Interoperability," 13 4 2016. [Online]. Available:
http://www.opengroup.org/cloud/cloud_iop/.
[Accessed 3 Feb 2016].

[9] V. M. Sivagami, and K. S. EaswaraKumar, "Survey
on Fault Tolerance Techniques in Cloud Computing
Environment," International Journal of Scientific
Engineering and Applied Science, vol. 1, no. 9, pp. 419-
425, 2015.

[10] Anjali D.Meshram,A.S.Sambare, and S.D.Zade,
"Fault Tolerance Model for Reliable Cloud
Computing," International Journal on Recent and
Innovation Trends in Computing and Communication
ISSN 2321 – 8169, vol. 1, no. 7, pp. 600-603, 2013.

[11] N.Chandrakala,P.Sivaprakasam, "Reliable VM
Identification in Multi Cloud Environment,"
International Journal of Computer Applications, vol. 65,
no. 15, pp. 8-11, Mar 2013.

[12] Rajesh.S, and Kanniga Devi.R, "Improving Fault
Tolerance in Virtual Machine Based Cloud
Infrastructure," International Journal of Innovative
Research in Science, Engineering and Technology, vol. 3,
no. 3, pp. 2163 - 2168, Mar 2014.

[13] K. J. Smith, Nature of Mathematics Thirteenth
Edition, Boston, MA USA: Cengage Learining, 2015.

[14] Fiaz Gul Khan, Kalim Qureshi, and Babar Nazir,
"Performance evaluation of fault tolerance
techniques in grid computing system," ELSEVIER
Computers and Electrical Engineering Journal, vol. 36,
no. 6, p. 1110–1122, Nov 2010.

[15] Dubrova, Elena, Fault-Tolerant Design, springer,
2013.

[16] Docker, "Docker Overview," [Online]. Available:

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 6, June-2017 454
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

https://docs.docker.com/engine/understanding-
docker/. [Accessed 11 Nov 2016].

IJSER

http://www.ijser.org/

	2.1 Select Ready Reliable Providers
	2.2 Dispatching Requests to Ready CSP
	2.3 Start Watching Time
	2.4 Gathering Enough Results to Make Decision
	2.5 Assessing the Reliability:

